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M A T H E M A T I C A L  M O D E L I N G  OF P E N E T R A T I O N  

OF A M I X E D  L A Y E R  I N T O  A S T R A T I F I E D  F L U I D  

V. I. K v o n  and D.  V.  K v o n  UDC 532.517.4 

The paper deals with the mathematical formulation and numerical solution of the two-dimensional 
problem of penetration of a turbulent mixed layer into a linearly stratified fluid under the action of a friction 
stress. The (e - e) model containing equations for the turbulence energy and its dissipation rate is used in 
turbulence simulation. We study numerically the behavior of the solution of the problem with various values 
of the buoyancy-force parameter in the equation for the dissipation rate of turbulence energy. The calculation 
results for the thickness of the mixed layer are in good agreement with the experimental data obtained by 
Kato and Phillips [1]. 

During warm seasons, deep reservoirs are usually stratified. The upper layers of water in them are 
subject to mixing due to turbulence- and convection-induced processes. The processes of turbulent mixing 
in the upper layers of deep reservoirs play an important part in the formation of their thermal structure, 
in the appearance of a thermocline. The thermocline is a layer that prevents the transfer of oxygen and 
nutrient substances in reservoirs and, hence, exerts a significant influence on functioning of water ecosystems. 
One of the main mechanisms that generate the upper mixed layer, namely, turbulence generation due to a 
tangential stress applied to the water surface and development of the turbulent motion in a steadily stratified 
fluid, was studied experimentally in [1]. The processes of turbulent mixing were simulated numerically in [2-4] 
under conditions of the laboratory experiment of [1] under the  assumption on the uniformity of hydrodynamic 
parameters along the length of the trough. In [5], an at tempt was made to eliminate the restriction on the 
uniformity of these parameters along the length of a trough, but only for a closed trough under the no-slip 
condition at its ends. 

In the present paper, we propose a problem that reflects the flow in a circular trough more precisely. At 
the end cross sections, we impose the free-flow condition at the outlet boundary and also the condition that 
the flow at the inlet boundary is an uninterrupted continuation of the flow at the exit from the considered 
domain of solution of the problem. The processes of vertical turbulent mixing are described on the basis of 
the complete (e - e) model, while the coefficients of horizontal turbulent exchange are determined by the 
Richardson formula. Moreover, this formulation of the problem takes into account the friction stress of the 
side walls. The possibility of the effect of these walls on the mixed-layer thickness was mentioned in [6]. 

F o r m u l a t i o n  of  t h e  P r o b l e m .  Water flows in a narrow long trough under the laboratory conditions 
described in [1]. Therefore, one can apply an approach that allows the initial equations of motion and transport 
of salt over the trough width in the radial direction to be averaged [7]. The equations of momentum and mass 
conservation and the equation for the density of salt water are then of the form [7, 8] 
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where t is the time, x 1 and x2 are the axes of the Cartesian coordinate system (the x2 axis is directed vertically 
upright); ul and u2 are the velocity components along xl and z2, respectively; p is the density of the aqueous 
salt solution; b is the trough width; g is the acceleration of gravity; z is the level of the water surface; Kh 
and Kv (Khs and Kvs) are the coefficients of total ( turbulent and molecular) viscosity (salt diffusion) in the 
horizontal h and vertical v directions, respectively; and r is the coefficient of friction resistance of the walls. 

It should be noted that  the density equation (3) follows from the diffusion equation of salt transport 
under the assumption of a linear dependence between the solution density and the salt concentration. 
Moreover, the coefficients of turbulent  heat and salt transport  are assumed to be equal. 

The coefficients of vertical turbulent exchange are determined using the equations for turbulence energy 
e and dissipation rate r [9, 10]: 
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Here Khe (Kh~) and Kve (Kve) are the coefficients of total diffusion of turbulence energy (dissipation rate) 
in the horizontal h and vertical v directions; P = K(Oul/OX2)2; G = -g(ers/po)K(Op/Oz); the coefficients of 
turbulent exchange are found by the following formulas [9, 10]: K = %e2/~, K,, = v + K, Kvs = vs + ersK, 
Kve = t/+ ertK, and Kve = v + er~; v and vs are the molecular viscosity and the salt diffusivity; % = 0.09, 
ers = 0.8; ere = 1.0; and ere ~ 0.77. We use the standard values of the remaining constants: cle = 1.44, 
c2~ 2.011.0 - 0.3exp (-Re~)]'] '  ReT = e2/(t,e), and cs~ = 0.8. The  total coefficients of horizontal exchange 
Kh, Khs, Kht, and Khe are assumed to be constant. Their  numerical values are given below. 

For system (1)-(5), the following boundary conditions are adopted: 
- -  at the ends (x = xL is the left cross section through which water flows into the region under consideration, 
and zR is the right cross section through which water flows out) 
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- -  on the water surface for x2 = z 
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Here y0 and y0 are the roughnesses of the water surface and of the bo t tom respectively, kb = 0.14, and 
c~ = 0.314 [11]. 

It should be noted tha t  in this physical experiment a constant tangential stress r,,, was applied to the 
water surface by displacement of the cover of the circular trough. Therefore, the level of the water surface 
is assumed to be constant  in the problem. Since the water flow is studied in a circular trough [1], the left 
and right end cross sections in the flow pattern correspond to the same arbitrary vertical cross section of 
the trough. Condition (7) means free liquid flow at the outlet section, while (6) implies an uninterrupted 
continuation of flow at the inlet section. 

In addit ion to the  boundary conditions (6)-(9), for system (1)-(5) one should specify the initial 
conditions corresponding to the state of rest. 

C a l c u l a t i o n  R e s u l t s .  A numerical solution of the problem stated is constructed on the staggered 
Arakawa C-grid [12]. In this case, the scalar values p, e, and e are determined at the central points of the 
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grid, and the velocity components are determined at the boundaries of the grid elements. The approximation 
method for source terms in Eqs. (4) and (5) with its test by a simple example of flow is presented in [11]. 
The horizontal velocity component is calculated using the splitting method [13]. In the first fractional step, 
variation in the horizontal momentum due to advection and diffusion is calculated at the central points with 
the pressure forces ignored. In the second fractional step, the velocity fields are adapted to the pressure 
distribution at the edges of the grid elements. Recall that the pressure distribution is considered hydrostatic 
and is, therefore, determined by the density distribution (if the level is constant). Then, the terms of horizontal 
advection and horizontal diffusion and also the vertical coefficients are calculated explicitly (from the known 
layer in time). We also used the sweep method in the vertical direction. 

Recall that the laboratory experiments were conducted under a constant tangential stress near the 
water surface directly under the trough cover. At the initial moment, salt water was at rest and had a 
linear density distribution over the depth. For simulation, we performed calculations for the density gradient 
Op/Ox2 = 1.92.10 -3 g /cm 4, friction stress at the trough cover rw = 0.995 dyn/cm 2, water depth h = 0.23 m, 
and trough length 4 m. The values of the total horizontal-exchange coefficients of Kh, Khs,/(he,  and/ the  were 
assumed to be equal and were calculated using the Richardson formula Kh = cl 4/3, where the value of I was 
accepted equal to the grid size in the horizontal direction (subgrid-turbulence parametrization), the numerical 
coefficient was c = 0.01 cm2/3/sec [14], Kh = 5.6- 10 -5 m2/sec, the time step was equal to 0.5 sec, the number 
of points of the grid over the trough depth and length was 40 and 20, respectively, and r = 1.32 �9 10 -3. A 
twofold decrease in the time step had practically no effect on the calculation results. 

Figure 1 shows the measurement [1] (points 1) and calculation results for the change in the mixed 
layer thickness at the center of the trough for c3e = 0.8 [10] and 1.0 [15] (curves 2 and 3) in the equation for 
turbulence-energy dissipation. For c3~ = 0.8 and 1.0, the curve shows good agreement with the experimental 
data and differ slightly from one another, but the calculation for c3~ = 0.8 gives a more preferable result. 

Figure 2a shows the density-dlfference distributions p - p0 (p, kg/m 3 and p0 = 1000 kg/m3), and 
Fig. 2b shows the ratios of the coefficients of turbulent and molecular viscosity in the vertical plane at time 
t = 240 sec for c3e = 0.8. All isolines are equidistant. The behavior of the density isolines and the turbulent- 
viscosity coefficient along the length of the trough exhibits their uniformity over the length. 

The authors are thankful to O. F. Vasil'ev and O. B. Bocharov for useful discussions. 
This work was supported by the Russian Foundation for Fundamental Research (Grant RM1000). 
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